Exercice 1 - Étude d’un servo valve
adapté de Centrale TSI 2010

A. Préalable

Ce sujet est extrait d’un sujet, vous pouvez, pour avoir une idée du support utilisé pour cette épreuve, aller consulter le sujet sur le site de l’école centrale.

B. Modélisation de l’actionneur

Le comportement de l’actionneur à soufflet est décrit par l’équation temporelle :

\[M_s \cdot x''(t) + b \cdot x'(t) + K_e \cdot x = (p_c(t) - p_0) \cdot S \]

- \(M_s \) : Masse totale supérieure en mouvement en kg
- \(S \) : Section utile du soufflet \(S = 89.10^{-6} \) m²
- \(K_e \) : Raideur du module d’élongation en N.m⁻¹
- \(b \) : Coefficient de frottement visqueux en N.m⁻¹.s
- \(p_c(t) \) : pression d’alimentation de l’actionneur
- \(p_0 \) : pression initiale

On réalise le changement de variable \(p_c^*(t) = p_c(t) - p_0 \). On supposera les conditions initiales nulles.

On pose \(X(p) \) la transformée de Laplace de \(x(t) \) et \(P_e(p) \) la transformée de \(p_c^*(t) \).

Le schéma bloc modélisant l’actionneur (module d’extension) à la structure suivante :

![Schéma bloc](image)

Q1. À partir de l’équation temporelle, établir l’équation symbolique en \(p \) qui décrit le fonctionnement de l’actionneur. Exprimer alors la fonction de transfert \(H_1(p) = \frac{X(p)}{P_e(p)} \).

Q2. Exprimer la fonction de transfert \(H_1(p) \) à partir du schéma blocs.

Q3. Comparer les deux formes de obtenues et exprimer \(K_1, K_2 \) et \(a \) en fonction de \(S, K_e \) et \(b \).

Q4. Mettre la fonction de transfert sous la forme \(H_1(p) = \frac{H_{10}}{p^2 + 2\xi \cdot p \omega^2_0 + 1} \).

Q5. Exprimer \(H_{10}, \xi \) et \(\omega_0 \) en fonction de \(M_s, S, K_e \) et \(b \).

La masse est \(M_s = 30 \) g.

La réponse du module à un échelon de pression \(p_c^*(t) = P_{e0} \xi(t) \) est donnée sur la figure 4.
Q6. À partir de la courbe, évaluer P_{e0}, la valeur finale du déplacement x_∞, le temps de réponse à 5% $T_{5\%}$, le dépassement relatif $D_{1\%}$, la pseudo-période ω_p.

Q7. En déduire H_{10}, ω_0 et $\dot{\epsilon}$.

À partir de l’expression de H_{10} et du relevé temporel.

Q8. Déterminer la valeur numérique de K_c la raideur du module d’elongation en N m$^{-1}$ s.

Q9. Déterminer la valeur numérique de b : coefficient de frottement visqueux en N m$^{-1}$ s.

C. servovalve

Les équations décrivant le comportement de la servovalve sont non linéaires, par simplification, et en tenant compte du fait que la variation de volume de la chambre reste faible devant le volume à l’équilibre, on admettra un modèle linéarisé, décrivant le comportement simplifié de la servovalve autour d’un point d’équilibre.

Dans le domaine symbolique, ce comportement s’exprime par l’équation :

$$(p + a_1) \cdot P_e(p) = a_2 \cdot I_e(p) - a_3 \cdot p \cdot X(p)$$

On donne $a_1 = 10 \text{ rad s}^{-1}$; $a_3 = 35 \times 10^5 \text{ Pa m}^{-1}$

Ces équations jointes à celles établies pour l’actionneur permettent d’obtenir le schéma-bloc de la figure 2 représentant le système (actionneur+ servovalve) avec en entrée le courant et en sortie la position de la tige :

Figure 2 – Schéma blocs

Q10. À partir de l’équation et du schéma blocs, exprimer H_2, K_3 et K_4 en fonction de a_1, a_2 et a_3.

2
Figure 3 – Réponse de l’ensemble servovalve + actionneur à un échelon d’intensité

Q11. Déterminer $H_2(p) = \frac{X(p)}{I_c}$ par la méthode de vos choix.

Q12. Montrer que le gain statique est donné par $\frac{X_0}{I_0} = \frac{a_2 \cdot S}{a_1 \cdot K_e}$.

Q13. À partir de la réponse à l’échelon d’intensité de la figure 3, donner la valeur de a_2 en Pa s A$^{-1}$.

Figure 4 – Zoom sur la réponse temporelle de l’ensemble

Q14. À partir des figures 3 et 4, proposer un modèle simplifié pour $H_{2s}(p) = \frac{X(p)}{I_c}$.

Exercice 2 - Détermination fonction de transfert par identification

Un système asservi est décrit par le schéma-bloc :
Le gain A est un gain proportionnel réglé à $A = 10$.

$F(p)$ est la fonction de transfert de l’actionneur du système. Cette fonction n’est pas connue.

Un essai à partir d’un échelon de consigne $e(t) = E_0\mathcal{H}(t)$ avec $E_0 = 5$ a permis d’obtenir la réponse temporelle de la figure 5 sur le document réponse.

Cahier de charges : On souhaite obtenir une erreur indiciale relative inférieure à 3% et un temps de réponse à 5% inférieur à 0,08 s.

Q1. Déterminer à partir de la réponse temporelle, le temps de réponse à 5%, l’erreur indiciale relative, le dépassement. Conclure.

Compte tenu de l’allure de la réponse temporelle, on présume que $F(p)$ peut être modélisée par la fonction de transfert $F(p)$ avec :

$$F(p) = \frac{K}{1 + \tau \cdot p}$$

Q2. Déterminer la fonction de transfert en boucle fermée $T(p) = \frac{S(p)}{E(p)}$ en fonction de K, τ et A

on pose:

$$T(p) = \frac{G}{1 + T \cdot p}$$

Q3. Déterminer G et T en fonction des différentes paramètres.

Q4. Sachant que $e(t) = E_0\mathcal{H}(t)$ déterminer la transformée de Laplace $E(p)$ de $e(t)$, en déduire $S(p)$.

Q5. À partir du théorème de la valeur finale et de la représentation temporelle, déterminer G.

Q6. À partir du théorème de la valeur initiale et de la représentation temporelle, déterminer la tangente à l’origine de $s(t)$, en déduire T.

Q7. À partir de la table des transformées inverses, déterminer $s(t)$. Tracer $s(t)$ sur la courbe temporelle.

Q8. Sachant que $A = 10$, déterminer τ et K de $F(p)$.

Q9. Déterminer la valeur que doit prendre A pour respecter le cahier des charges.

Q10. Tracer la réponse temporelle correspondante sur la courbe.